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LElTER TO THE EDITOR 

Failure of perturbation theory in random field models 

J Villain? 
Institut fur Festkorperforschung, Kernforschungsanlage Julich, Postfach 1913, D-5170 
Julich, Federal Republic of Germany 

Received 11 July 1988, in final form 15 September 1988 

Abstract. The failure of perturbation theory is demonstrated in a toy model which describes 
a domain wall in a random field Ising ferromagnet. It is argued that there are non- 
perturbative terms which are related to rare random field distributions for which the 
Hamiltonian have many minima while the perturbative solutions are unique. 

For those who are good at mathematics, there is now a proof available that the 
three-dimensional random field Ising model (for a review see [l]) shows order for 
sufficiently weak random fields at T=O [2] or at low temperature [3]. This is in 
agreement with simple arguments [4], but disagrees with various sophisticated, though 
approximate, calculations [ 5 ,6 ]  based on standard many-body methods. The reason 
for the failure is not yet fully understood and the forthcoming discussion aims to 
provide a better understanding. 

In this letter we want to discuss the difficulties which arise in the perturbation- 
theoretical treatment of a domain wall in the random field Ising model. If d is 
the space dimension, the domain wall is roughly parallel to the hyperplane P 
of the first (d-1)  coordinates and zi denotes the height of the wall in the dth 

Figure 1. A domain wall for d = 3 dimensions. 
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direction (see figure 1 )  above the point i E P, then the Hamiltonian is 
r m  

X = i g C z f + i J  ( Z ~ - Z ~ ) ~ + ~  J dCHi(5)f(5-zi) 
i (U) i -m 

where g and J are constants, ( i j )  denotes pairs of nearest neighbours on a ( d  - 1 ) -  
dimensional simple cubic lattice, and the Hi( 5 )  are independent, random, frozen 
variables: 

Hi ( 5 )  (5 ’ )  = H’aija ( 5  - 5 ’ )  (2) 

where H is a real constant. 
The function f(z)  should satisfy the condition f (z )  = z/lzl for IzI larger than the 

wall thickness, so that f(z) represents Ising spins on both sites of the wall. However, 
we wantf(z) to be a smooth function in order to be able to apply perturbation theory. 
Thus, we assume f’(z) - f ’ ( O )  for IzI < l/f’(O), while f ’ (z)  vanishes rapidly for IzI > 
l/f’(O). Since the radius of convergence off is important, it is sometimes appropriate 
to use a special form of fi We choose 

f( z) = tanh z. (3) 

This system has been studied by various authors [7-91. In the limit g + 0, T +  0 
and H<c J it has been argued [ l ,  7-91 (and we believe this is right) that for a wall of 
size L ~ - ‘ ,  

1 - 
(z’) p - (H/ J)4’3 L(5-d)’3 (4) 

The brackets (. . .) denote a thermal average and the bar an average on the field 
distributions. 

On the other hand, if the last term of ( 1 )  is treated as a perturbation, it can be 
shown [ 101 that all terms of the perturbation expansion converge for d > 3 and the 
result is 

- 
(z’) - (H/J )2L(5 -d ’ /2  ( 5 )  

with a temperature-dependent prefactor. 
Since neither (4) nor ( 5 )  can be exactly derived, it is appropriate to investigate a 

model where exact results can be obtained [8, 1 1 ,  121. This model is the one- 
dimensional version of (1). i takes a single value 1, so that the second term of ( 1 )  
vanishes and, writing zi = z, (1) becomes 

m 

X =  igz2+ d5  H ( l ) f ( l -  z). 
-m 

In the case where f (z )  = z/lzl it can be exactly proved that [8,12] 
__ 
(z’)=(H/g)4/3 (7) 

and this should obviously be correct for model (3) as well if (z’) is much larger than 
the squared wall thickness ( l ) ,  i.e. if H >> g. On the other hand, for H << g, one would 
like to apply perturbation theory. It starts with the Taylor expansion of ( 6 ) ,  namely 

m 

X=$gz2+ z”Q,/n! 
n =O 
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where 

f'") denotes the nth derivative off:  The expansion (8) converges, with the choice ( 3 ) ,  
if 

(ZI < T/2. (10) 

d X/dz = ( g  + Q2)z0 + Q1 + fQ3z i  + Q4z; + . . . . ( 1 1 )  

The minimum zo of (8) satisfies 

Apart from exceptional cases, to be addressed below, all Qn are of order H .  Hence, 
if H << g, ( 1 1 )  generally has a single solution: 

With a high probability, Q1 , Q2, Qs are of order H << g, and (12) satisfies (10). Equation 
(12) yields 

- - -  - - 
( z2 ) r=o=  ( z @ =  Q : / g 2 + 3 Q : Q : / g 4 +  Q 3 ? 3 / g 4 + O ( H 6 / g 6 )  

or, using (9) and (2), 

where 

Thus we have been surprised to see that the term in ( H / g ) 4  vanishes! Using the 
replica trick, it can be shown that all terms vanish beyond second order. A similar 
result was already obtained by Engel [ 1 1 1  for the iterative (instead of perturbative) 
solution in the case of a slightly different model. Thus, the result (7) cannot be obtained 
by perturbation theory, even summing all terms (s inxthey  all vanish!). We are left 
with two possibilities. The first one is that, at T = 0, (z') = ( H / g ) 2  VI for H / g  smaller 
than some threshold. The second one is 

- 
( z ' ) ~ = ~  = VI H 2 / g 2  + non-perturbative terms. (15) 

It will now be argued that this second possibility is the most plausible one. Indeed, 
there is some probability that the random field distribution is such that (12) does not 
satisfy (lo),  and is therefore not reliable. This happens for instance if IQll>g or 
Q2 C -g.  

The probabilities that lQll > g and that Q2 < - g  are not independent. Indeed, if 
Q1 >> g, then Q2 has a probability to be smaller than - g  and conversely. Using (9) and 
(3), the probability that lQ1l > g can be roughly evaluated by replacing f'(5) by f'(0) 
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for IzI < l/f’(O) and 0 for JzI > l/f’(O). Replacing the integral (9) for n = 1 by its 
Riemann definition, one divides the interval [-l/f’(O), l/f’(O)] in small intervals of 
length a and (9) is approximated by 

where un = k-1. The factor 6 is introduced in order to have ( x+dx/a c H&crn)2=H2dx 

f l = X  

independently of a. Now, the probability that (16) is larger than g is 

P = constant x ( H m / g ) *  exp(-Kg2/ H2f’(0)) (17) 

where a = 1 and K = f ,  but the approximation (16) is not precise enough for these 
evaluations to be reliable. However, the general form (17) is probably correct. 

If Q, and Q2 are of order g, H can have several minima and then formula (12) is 
unreliable. Thus, our speculation is 
_. 

( z’)?,~ = VI H2/ g2 + constant x ( H m / g )  

x exp( - Kg2/ H2f’(0)) H << g / m .  

We shall now consider another quantity where such a non-perturbative expression 
can be derived somewhat less speculatively. This quantity is the fourth moment (6z4) 

6z = z -zo 

which we want to evaluate at low, but non-vanishing, temperature. 

chosen such that f ’ (0)  = 1 .  Assuming all Qn = H << g, (8) becomes 
The perturbation-theoretic treatment will first be outlined. The length unit will be 

6X=;g’Sz2+~Q3Sz3+~Q4(Sz4+4zOSz3)+.  . . 

g’=g+Q2+Q3ZO+fQ4Z:+ . . . .  
where 8X = X( z) - X( zo) and 

A straightforward calculation yields 

( Sz4) = 3( T2/g’2)( 1 + A Q 4 T / g ’ 2  + . . .) 
where A is a numerical coefficient. Thus, in the low-temperature limit, for almost all 
field configurations, 

( Sz4) = 3 T 2 / g 2 .  (19) 
It will now be argued nouerturbatively that, for fixed H and g, the correct 

low-temperature behaviour is ( 8 ~ “ ) -  T, so therefore much larger than (19). To obtain 
this result, it is necessary to consider the rare field configurations for which Q2 < -g  
and/or IQl/ > g. For those configurations it is not possible to consider the field much 
smaller than g. On the contrary, its average between -1  and 1 is of order Q1, i.e. of 
order g since IQl l>g (configurations with IQl/ >>g can be neglected because- 
probability analogous to (17) would be much smaller). So, the cont r ibu t iona8z4)  
of field configurations with large Q1 is obtained as follows: first calculate (Sz4) for 
H = g, then multiply by (17). For H = g, (6z4) can be roughly evaluated as in the case 
H >> g treated in [ 101. Thus, we first recall that case. 
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If H >> g, the main contribution to higher moments (8z2,) arises from rare field 
- configurations where %‘(A) has two minima zl ,  z2 at large ‘horizontal’ distance Izl - z21 = 
( z ~ ) ” ~  and small’vertical’ distance IX(zl) - %‘(z2)l < T. The probability that this occurs 
is of order T/g(z2) and it follows -- 

(8Z2P) = ( T/g(z2))(z2)P = (T/g)(H/g)“’”-”’’. 

For H = g this is of order T/g. As was said above, the contribution to (8z4) of 
field configurations with Q, = g is obtained by multiplication by (17). Then one should 
add the contribution (19) of field configurations with Q1 = H. The result is - 

( ~ z ~ ) = 3 ~ ~ / g ~ + c o n s t a n t x  (T/g) (H/g)”  exp(-Kg2/H2). (20) 
In the low-temperature limit the second term dominates for any fixed H and g. 

On the other hand, this term cannot be obtained by perturbation theory since 
exp(-Kg2/H2) has no expansion in powers of H / g .  Perturbation theory will give 
only the first term of (20). 

As in similar cases [ l l ,  13,141 a standard many-body technique (here perturbation 
theory) is seen to fail because the Hamiltonian (8) has multiple minima. If perturbation 
theory fails in one dimension, it has no reason to succeed in more dimensions. 

Appendix 1. Proof of (15) 

(It will not be proved that non-perturbative terms are non-zero!) 
The replicated Hamiltonian can be written, apart from an additive constant, as 

n n 

%=;g c zt++pH’  V(Z,-Zp) 
CY=l a , y = 1  

where a, y are the replica indices, n is the number of replicas and 
m 

V(Z) = I_m d l  If({- z) -f(l)I2 
= v,z’+ v2z4+. . . 

where 

The Hamiltonian (Al)  is 
%= %o+ 2 4 +  %6+. . 

with 

The unperturbed Hamiltonian go has one eigenvector 11) with eigenvalue g and 
( n  - 1)  eigenvectors 12), . . . , In) with eigenvalue (g+ nE) with E = H2V1/4T. Let 
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Z , ,  Z 2 ,  . . . , 2, be the components of ( z , ,  . . . , z N ,  . . . , z , )  along the eigenvectors. The 
perturbation (g4+ % , + a .  .) does not depend on 2,. Therefore (Z: )=(Z: ) , ,  the 
unperturbed average value. On the other hand 

Z , " = o ( l / p ! ) ( z : ( g 4 + g 6 + .  . . ) p ) o ( - p ) p  
(") = x := 0 ( 1 / p !) (( %4 + %6 + . . . ) '), ( - p  ) 

Let first g6, g8,. . . , be neglected. The term of order p in the denominator is equal 
to a function of n multiplied by 

( H 2 /  T 2 )  p(Z2):p = (7) H 2  ( L, 2 p  

g + n &  
2, 

=(&) 
The term of order p in the numerator is equal to the same thing times (23,. 
Now, what is the effect of %6? For instance a term in the denominator with one 

factor g4 replaced by 9 2 6  is 

x a function of n. 
T 

p p ( % ? - ' 2 6 > 0 =  

The general term of (2:) is easily seen to have the form 

A,, ( n ) (5) 2 p  (-") g + n &  q(z:)o. 

It follows that 

1 1 
n ,  n 

- 
(z') = - C (z',) =- [(z:)+ ( n  - 1)(Z:)] 

The limit n = 0 should be taken. Since the result should be finite, all Apq( n )  should 
contain a factor n for p > 0. This is proved for AIo in appendix 2. At T = 0, the above 
expansion reduces to its first term and this proves (15). 

Appendix 2. Calculation of Alo(n) 

One can choose Z2 = ( z ,  - z2)/v'?. Then 
(z:( 1 - pg4+. . .)), 

(1-pg4+. . .), (z:) = 
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The calculation is easier if one chooses a new basis with z , - z 3 = Z 2 ~  and 
2, = ( z1 + z2 - 2Z2)/& Hence 2(zl  - z2 )  = Z3&+ Z2& It follows that 

H2 
(2:) - (Z30 = -3 V2[8(G)O - 8(z30(z301 
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